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Summary

➢ Control Framework: What is it?

➢ Lassi’s Object Networks

➢ What we want to add to them

➢ Design: System Features

➢ Design: The core classes

➢ Design Scenarios

➢ Status
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What Is It?

The control framework is the part of the infrastructure that
makes sure that
– The right piece of software

– Runs

– At the right time

– With the right inputs and

– The outputs go to the right place

 (Lassi’s definition)
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Lassi’s Object Networks

➢ Colors = data
types

➢ Modules =
behavior

➢ Whole network
= component

➢ Input-output
dependency
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Object Networks Features

✓ Design based on components
– Implementing well-defined interfaces

– Extensive use of notification

– Goal is to maximize re-usability

✓ Data flow based, pushing data down to trigger execution
– Indeed like a trigger system

– Kind of natural way to design a reconstruction program

➢ Is this the way we think when we analyze the data?
– No! We pull data at random (well…) from the modules that

reconstructed them, after they are done for that event (run, job,…)

➢ How easy will be to predict (and repeat!) the execution path
of a 1000 objects network?
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HitFinder

TrackFinder

T0Refiner

HistoHits

Hits

Tracks Vector<Hit*> myHits

Tracks

Hits

myHits[j] = newT0;

Also Hits has changed!!!

Hits
Hits
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What Is Missing?

➢ I don’t think we can reasonably interact with a self-
triggering network of say 1000 components without knowing
its global state.

➢ The framework as a State Machine:
– My HFILL must run after “event done”

– My new geometry constants must be loaded for “run 4567”

– I have to broadcast a “pack-up and go” message to 1000 modules
when the muon decoding module produces a “fatal error”
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Solution: Add Control States to the Network

➢ Synchronize network execution, notifying modules about the
next state transitions they may be interested into

➢ Control (or, even better, to suggest) the order in which the
components undergo a state transition (=run)

➢ Define the states, the order of modules and the state sources,
dynamically via the UI

➢ There should be no linker dependencies among components
and framework
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The Control States Network

NewJob NewEvt OnErr

•Sources

•States

•Components

•State Methods

HitFinder Tracker
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Setting up - a sample script

➢ associate States and StateSources
  StateSource rawFile(inputFile)
 next_event.attach(rawFile)

➢ define Sequences of components to be executed
      sequence all =
           { "hitFinder", "tracker", "myanal" }
   sequence reco = { "tracker", "myanal"}

➢  define State transitions, with usual flow-control constructs
     next_run.run("all")
   while (next_event.run("all")) {
             fill_histos.run("reco")
             fill_Bhistos.run("paolo")
   }
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The Component Interface Dictionary

➢ describe to the framework (via code generation)
– the States

 interface next_event : State {};

– each component interface
 interface hitFinder {
   void init();
   Result nextEvent(in WireCollection wires,
                    out HitsCollection hits);
 }

– the association between States and component methods
ADD_STATE_METHOD(next_event,
                 hitFinder::nextEvent)
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Running

➢ The framework runs States following the script order.

➢ Control returns to the framework after each state completes

➢ The State tries to run each registered component in order

➢ The Component determines what is the status of its
associated method (e.g Ready, notReady, alreadyRun), run it
if ready, and report to the State.

➢ The Object Network (or a Data Manager)  notifies
Components when their Parameters are ready or change.

➢ The State may re-queue a Component which is NotReady.
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The Core Classes
➢ State Source

– drive the framework generating actions

➢ State (and Concrete States)
– observe sources for matching actions, run component methods

➢ Component Managers
– observe states, add matching methods to their queue

– generated from dictionary

➢ Component Methods
– implement the software-bus concept

– function objects wrapping real component method

– determine their status

– marshal parameters (database, F77)

– generated from dictionary
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The Software Bus

UI EVDIS

Trk Simul

Software Bus

Server
Interfaces

Client

Interfaces
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A Toy Implementation
     class HitFinder__newEvent : public virtual IRunnable {
           .....
         //IRunnable implementation
         inline IRunnable* clone() const { return new __newEvent(*this);}
         Result run(const IScheduler& s) {
           Result rc;
           Handle < TrackSet >  set1;
           Handle < TrackSet >  set2;
           Container < ParticleSet >  set3;
           Key < TrackSet >  key1("COT");
           Key < TrackSet >  key2("SVX");
           Key < ParticleSet >  key3("chargedCandidates");
           //unlikely to be done exactly like that but...
           event->get(key1, set1);
           event->get(key2, set2);
           rc = _comp->newEvent(set1, set2, set3);
           if (rc == Result::success) 
                   event->put(key3, set3);
         }
     };
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Scenario: Running a State

➢ The source notifies all registered states that he has a newEvent action
StateSource::notify DEBUG: notifying newEvent

➢ newEvent state catches the action and notifies its observers, the managers
State::update DEBUG: newEvent[instanceof NewEventState] got
message newEvent

➢ Each manager add the matching method to the state queue

➢ Now newEvent runs the scheduled methods
State::run DEBUG: newEvent[instanceof NewEventState] starts
Hitfinder::newEvent DEBUG: running
State::run WARNING: newEvent[instanceofHitFinder::__newEvent]
was not ready and had to be rescheduled
Histogrammer::newEvent DEBUG: running
Hitfinder::newEvent DEBUG: running
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Scenario: Running a State
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Scenario: Setting Up

➢ First we define the state classes
DEFINE_CTRL_STATE(NewJobStateS)
DEFINE_CTRL_STATE(NewRunState)
DEFINE_CTRL_STATE(NewEventState)

➢ Then we create the component managers
HitFinderMgr hitFinder;
HistogrammerMgr myHistos;

➢ We create the states instances and we register the component with them.
NewJobState newJob("newJob");
newJob.addIObserver(&myHistos);
newJob.addIObserver(&hitFinder);

➢ Finally we create the state source and register the states with it.
StateSource testSource("testSource");
testSource.addIObserver(&newJob);
testSource.addIObserver(&newRun);
testSource.addIObserver(&newEvent);
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Where do we stand?

➢ We have a web page
http://iago.lbl.gov/paolo/ATLAS/framework/actiondesign.html

➢ We have a prototype (can get it from the same URL)
– Core classes running

– Interface dictionary starting

– Scripting in progress (IDL to Swig, John M.)

➢ We can use the prototype as a test bed for the requirements and
use-cases exercises in progress


